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a b s t r a c t 

High-quality T 1 -weighted (T 1 w) and diffusion tensor imaging (DTI) brain templates that are representative of 
the individuals under study enhance the accuracy of template-based neuroimaging investigations, and when they 
are also located in a common space they facilitate optimal integration of information on brain morphometry 
and diffusion characteristics. However, such multimodal templates have not been constructed for the brain of 
older adults. The purpose of this work was threefold: (A) to introduce an iterative method for construction of 
multimodal T 1 w and DTI templates that aims at maximizing the quality of each template separately as well as the 
spatial matching between templates, (B) to use this method to develop T 1 w and DTI templates of the older adult 
brain in a common space, and (C) to evaluate the performance of the method across iterations and compare it to 
the performance of state-of-the-art approaches based on multichannel registration. It was demonstrated that more 
iterations of the proposed method enhanced the characteristics and spatial matching of the resulting T 1 w and DTI 
templates. The templates of the older adult brain generated by the final iteration of the proposed method provided 
better delineation of brain structures, higher discriminability between tissues, and higher image sharpness near 
the cortex compared to templates generated with approaches employing multichannel registration. In addition, 
the spatial matching between the T 1 w and DTI templates constructed by the proposed method approximated 
the template alignment achieved with methods employing multichannel registration. Finally, when using the 
templates generated by the proposed method as references for spatial normalization of older adult T 1 w and DTI 
data, both the intra-modality inter-subject normalization precision and the inter-modality spatial matching were 
higher in most metrics than those achieved with templates constructed with other methods. Overall, the present 
work brought new insights into multimodal template construction, generated much-needed high quality T 1 w and 
DTI templates of the older adult brain in a common space, and conducted a thorough, quantitative evaluation of 
available multimodal template construction methods. 
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. Introduction 

High-quality T 1 -weighted (T 1 w) and diffusion tensor imaging (DTI)
rain templates that are representative of the individuals under study
ave an important role in neuroimaging investigations ( Avants et al.,
010b ; Fonov et al., 2011 ; Joshi et al., 2004 ; Mazziotta et al., 2001 ;
hang and Arfanakis, 2018 ). When these templates are also located in a
ommon space they form a multimodal set of templates that facilitates
ptimal integration of information on brain morphometry and diffusion
haracteristics across individuals ( Kochunov et al., 2007 ; Avants et al.,
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010a ; Kim et al., 2015 ; Sasamoto et al., 2014 ; Sydykova et al., 2007 ),
llows voxel-wise multivariate statistical analyses ( Avants et al., 2008a ),
nd provides the foundation for constructing additional structural, func-
ional, and connectivity templates and labels to form a comprehen-
ive digital brain atlas ( Toga et al., 2006 ). To date, several pairs of
 1 w and DTI templates of varying quality and located in the same
r approximately the same space have been developed for different
ge groups ( Hsu et al., 2015 ; Mori et al., 2008 ; Rohlfing et al., 2010 ;
hang et al., 2011 ). However, no multimodal T 1 w and DTI templates
ave been constructed exclusively from older adult data. It is well known
hat due to age-related brain changes, manifested in T 1 w and DTI im-
ges as tissue atrophy, enlarged ventricles, widened sulci, lesions, in-
reased mean diffusivity, reduced diffusion anisotropy and other signal
e 2022 
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hanges ( Blatter et al., 1995 ; Cabeen et al., 2017 ; Courchesne et al.,
000 ; Dickie et al., 2016 ; Ge et al., 2002 ; Good et al., 2001 ; Liu et al.,
003 ; Scahill et al., 2003 ; C. D. Smith et al., 2007 ; Madden et al., 2004 ;
fefferbaum and Sullivan, 2003 ; Salat et al., 2005 ; Sullivan et al., 2006 ,
010 ), use of young adult T 1 w and DTI templates in studies of older
dults increases spatial mismatch across individuals, and reduces the
ensitivity and accuracy of analyses ( Fonov et al., 2011 ; Good et al.,
001 ; Ridwan et al., 2021 ; Senjem et al., 2005 ; Van Hecke et al., 2011 ;
oon et al., 2009 ). There is therefore a need for multimodal T 1 w and
TI templates of the older adult brain. 

A number of approaches have been used previously to construct mul-
imodal T 1 w and DTI templates, and these approaches can be grouped
nto those that construct templates: a) in series e.g. first T 1 w and then
TI, or the opposite, and b) in parallel. In the first category, previous
ork constructed a T 1 w template from data on multiple individuals and
pplied the resulting transformations to diffusion tensor-derived data
hich were then averaged to build corresponding templates (e.g. frac-

ional anisotropy and mean diffusivity templates) ( Rohlfing et al., 2010 ).
his approach ensured excellent matching between the resulting T 1 w
nd DTI templates. However, an important limitation was that the spa-
ial transformations that match T 1 w data across multiple individuals
o not ensure optimal matching of DTI data from the same individu-
ls, because in T 1 w images most of the contrast is located at the cor-
ex and subcortical structures and there is limited information to guide
egistration in the white matter where most of the DTI contrast is lo-
ated, thereby lowering the quality of the DTI template ( Zhang and
rfanakis, 2018 ). Similarly, other work registered average diffusion-
eighted images from multiple individuals to the previously constructed

CBM-152 T 1 w template ( Mazziotta et al., 1995 ) and applied those trans-
ormations to the diffusion tensor data, which were then averaged to
onstruct a DTI template in ICBM-152 space ( Mori et al., 2008 ). Again,
he main limitation was that spatial matching of DTI data across indi-
iduals was not optimized, reducing the quality of the DTI template
 Peng et al., 2009 ). Hsu et al., 2015 , recognized this limitation and
ollowing T 1 w-based alignment of diffusion imaging data to ICBM-152
pace ( Mazziotta et al., 1995 ) and construction of a temporary diffu-
ion spectrum imaging (DSI) template, performed additional DSI-based
egistrations to improve DSI matching across individuals and generated
n improved DSI template. However, one limitation of this approach
as that since the DSI-based registrations occurred after the T 1 w reg-

strations had been completed, the space of the final DSI template may
ave deviated slightly from the space of the T 1 w template. Another lim-
tation was that the two templates were based on data from different
roups of people having different characteristics which may have lim-
ted the spatial matching across templates, and even in regions with ap-
arently good matching, the combination of T 1 w and DSI characteristics
ay not be representative of the human brain. In brief, previous work

onstructing multimodal T 1 w and DTI templates in series was able to ei-
her optimize template matching across modalities and template quality
or only one modality at the cost of low template quality for the other
odality, or to optimize template quality for both modalities separately

t the cost of reduced template matching across modalities. 
To address the above limitations, multimodal templates can be con-

tructed in parallel using multichannel registration ( Arthofer et al.,
021 ; Avants et al., 2008a ; Guimond et al., 2002 ; Irfanoglu et al., 2016 ;
ange et al., 2020b ; Li and Verma, 2011 ; Park et al., 2003 ). Multi-
hannel registration estimates a joint deformation that aims to optimize
nter-subject spatial matching for all modalities, thereby ensuring both
igh template quality and excellent template matching across modal-
ties. However, although this approach may work well when building
ultimodal T 1 w and T 2 w templates which have similar features, most

f the contrast in T 1 w images is in gray matter while most of the con-
rast in DTI is in white matter, and therefore T 1 w information may be
istracting when attempting to optimize inter-subject matching of DTI
 b  

2 
eatures, and the opposite (the severity of this problem also depends on
he registration algorithm). We argue that the requirement for simulta-
eous optimization of inter-subject spatial matching in both T 1 w and
TI data may lead to less precise spatial matching of the features of

nterest in each modality compared to considering each modality sepa-
ately, thereby compromising the quality of both templates. 

The purpose of this work was threefold: (A) to introduce an iterative
ethod for multimodal T 1 w and DTI template construction that aims at
aximizing the quality of each template as well as the spatial matching

etween templates by alternating optimization between modalities and
pplying all transformations to both modalities, (B) to use this method
o develop T 1 w and DTI templates of the older adult brain in a com-
on space as part of an ongoing project to develop a comprehensive

lder adult brain atlas named Multichannel Illinois Institute of Technol-
gy & Rush university Aging (MIITRA) atlas, and (C) to evaluate the
erformance of the method across iterations and compare it to the per-
ormance of state-of-the-art approaches based on multichannel registra-
ion. The proposed method for multimodal T 1 w and DTI template con-
truction uses state-of-the-art single modality registration in data from
ultiple individuals to maximize the quality of one template and applies

he resulting transformations to data from both modalities, then uses sin-
le modality registration to maximize the quality of the other template
nd applies the resulting transformations to data from both modalities,
nd repeats these steps iteratively, combining the transformations from
ach step to minimize interpolations. Each iteration aims at maximizing
he quality of each of the two templates in series, and multiple itera-
ions aim at enhancing the spatial matching between the two templates.
he proposed method was used to develop T 1 w and DTI templates of
he older adult brain in a common space. The performance of the pro-
osed method was evaluated across iterations and was also compared to
hat of approaches using multichannel registration in terms of template
uality, spatial matching across templates, and spatial normalization of
lder adult data. 

. Methods 

.1. Participants and data acquisition 

Two older adult brain MRI datasets were used in this work. Dataset
 was used for constructing multimodal T 1 w and DTI templates.
ataset 1 consisted of structural T 1 w and diffusion data from 202 non-
emented older adults (50% male; 65.2–94.9 years age range; mean ± sd
ge = 80.56 ± 8.14 years of age; 161 with no cognitive impairment and
1 with mild cognitive impairment) participating in the Rush Memory
nd Aging Project (MAP) ( Bennett et al., 2018 ). All participants pro-
ided written informed consent according to procedures approved by
he institutional committee for the protection of human subjects. Pre-
ious work has shown that this number of participants is sufficiently
arge to generate an unbiased and robust brain template ( Ridwan et al.,
021 ; Yang et al., 2020 ). All data were collected on a 3T Siemens
158 persons) and a 3T Philips MRI scanner (44 persons). T 1 w im-
ges were acquired using a 3D magnetization prepared rapid acquisi-
ion gradient echo (MPRAGE) sequence with the following parameters:
or 3T Siemens, TR = 2300 ms, TE = 2.98 ms, TI = 900 ms, flip-angle = 9°,
eld of view = 256 mm x 256 mm, 176 sagittal slices, acquired voxel
ize = 1 × 1 × 1 mm 

3 , and an acceleration factor of 2; for 3T Philips,
R = 8 ms, TE = 3.7 ms, TI = 955 ms, flip-angle = 8°, field of view = 240 mm
 228 mm, 181 sagittal slices, acquired voxel size = 1 × 1 × 1 mm 

3 ,
nd an acceleration factor of 2. The diffusion data were acquired us-
ng a spin-echo-planar diffusion-weighted imaging sequence with the
ollowing parameters: for 3T Siemens, TR = 8100 ms, TE = 85 ms, field of
iew = 224 mm x 224 mm, 65 axial slices, voxel size = 2 × 2 × 2 mm 

3 ,
 = 1000s/mm 

2 for 40 diffusion directions, and six b = 0 s/mm 

2 images;
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or 3T Philips, TR = 10,701 ms, TE = 55 ms, and all other parameters were
he same. 

Dataset 2 was used for assessing spatial normalization precision
hen using the templates generated by the different methods as ref-

rence. Dataset 2 consisted of T 1 w and DTI data from 202 non-
emented older adults (50% male; 65–93.2 years age range; mean ± sd
ge = 78.3 ± 6.02 years of age; 122 with no cognitive impairment and
0 with mild cognitive impairment) participating in the Alzheimer’s
isease Neuroimaging Initiative 3 (ADNI3) (http://adni.loni.usc.edu).
DNI was launched as a public-private partnership in 2003, led by Prin-
ipal Investigator Michael W. Weiner, MD. The primary goal of ADNI has
een to test whether serial MRI, positron emission tomography (PET),
ther biological markers, and clinical and neuropsychological assess-
ent can be combined to measure the progression of mild cognitive

mpairment and early Alzheimer’s disease. All data in Dataset 2 were
ollected on 3T Siemens (146 persons) and 3T Philips (56 persons) MRI
canners. T 1 w images were obtained using 3D MPRAGE sequences with
he following parameters: for 3T Siemens, TR = 2300 ms, TE = 2.98 ms,
I = 900 ms, flip-angle = 9°, field of view = 256 mm x 240 mm, 208 slices,
cquired voxel size = 1 × 1 × 1 mm 

3 , and an acceleration factor of 2; for
T Philips, TR = 6.5 ms, TE = 2.9 ms, TI = 900 ms, flip-angle = 9°, field of
iew = 256 mm x 256 mm, 211 slices, acquired voxel size = 1 × 1 × 1 mm 

3 ,
nd an acceleration factor of 2. DTI data were acquired using spin-echo-
lanar diffusion-weighted sequences with the following parameters: for
iemens Skyra E11 (101 persons), TR = 9600 ms, TE = 82.0 ms, field of
iew = 232 mm x 232 mm, 80 axial slices, voxel size = 2 × 2 × 2 mm 

3 ,
 = 1000s/mm 

2 for 48 diffusion directions, and seven b = 0 s/mm 

2 im-
ges; for Siemens 20VB17 (45 persons): TR = 12,400 ms, TE = 95 ms, field
f view = 232 mm x 232 mm, 80 axial slices, voxel size = 2 × 2 × 2 mm 

3 ,
 = 1000s/mm 

2 for 30 diffusion directions and one b = 0 s/mm 

2 image;
or Philips (56 persons), TR = 9916 ms, TE = 86 ms, field of view = 256 mm
256 mm, 80 axial slices, voxel size = 2 × 2 × 2 mm 

3 , b = 1000s/mm 

2 

or 32 diffusion directions, and 9 b = 0 s/mm 

2 images. 

.2. Image processing 

T 1 w images in Datasets 1 and 2 were skull-stripped using a multi-
tlas skull-stripping method with a set of 100 atlases ( Doshi et al.,
013 ; Heckemann et al., 2015 ). The brain images were segmented
nto white matter, gray matter, and cerebrospinal fluid using CAT12
 Farokhian et al., 2017 ), and the three masks were used as priors for N4
ias field inhomogeneity correction ( Tustison et al., 2010 ). The result-
ng image intensities were normalized with z-score normalization using
he mean and standard deviation of the intensities inside the combined
ray and white matter masks. The gray matter in the T 1 w images of
ataset 2 were also segmented into the Desikan-Killiany regions using
reeSurfer ( Fischl, 2012 ; McCarthy et al., 2015 ). 

Diffusion-weighted images in both Datasets 1 and 2 were corrected
or motion, eddy-currents and EPI distortions, and the B-matrix was re-
riented using the DIFFPREP tool of TORTOISE ( Irfanoglu et al., 2017 ;
ierpaoli et al., 2010 ; Rohde et al., 2004 ). The diffusion tensors were
hen estimated in each brain voxel using the DIFFCALC tool of TOR-
OISE and the RESTORE nonlinear fitting option ( Chang et al., 2005 ,
012 ). FA maps were generated from the diffusion tensors. 

Prior to template construction, two preprocessing steps were per-
ormed for every participant i ( i = 1…N, N = 202) in Dataset 1. First,
he diffusion tensors of participant i , denoted as 𝐷𝑇 𝐼 𝑖 , were registered to
hat participant’s T 1 w data, denoted as 𝑇 1 𝑖 , to correct any motion occur-
ing between sequences. To accomplish that, the corrected images with
o diffusion weighting, 𝑏 0 𝑖 , were affinely registered to 𝑇 1 𝑖 using ANTs
 Avants et al., 2009 , 2011 ) (affine registration was preferred over rigid
ody registration because in some cases the former was shown to pro-
ide slightly better alignment of DTI and T 1 w data than the latter) with
utual information as the cost function, and the resulting transforma-

ion 𝜑 𝑏 0 𝑖 →𝑇 1 𝑖 was applied to 𝐷𝑇 𝐼 𝑖 . Next, the 𝑇 1 𝑖 data were aligned with
NI space through a rigid transform 𝜑 𝑇 1 𝑖 →𝑀 𝑁 𝐼 . The 𝐷𝑇 𝐼 𝑖 data were
3 
lso transformed to MNI space using the combination of the two trans-
orms, 𝜑 𝑏 0 𝑖 →𝑇 1 𝑖 ◦𝜑 𝑇 1 𝑖 →𝑀 𝑁 𝐼 , to minimize interpolations. The co-registered
nd MNI-aligned T 1 w and DTI data of Dataset 1 were used in template
onstruction as described next. 

.3. Proposed method for constructing multimodal T 1 w and DTI templates 

The proposed method performs spatial normalization across partici-
ants based on T 1 w or on DTI data in an alternating fashion, applies all
ransformations to data from both modalities, and repeats this process
or multiple iterations. More specifically, each iteration includes two
teps ( Fig. 1 ). In step 1, spatial normalization is driven by T 1 w infor-
ation, a T 1 w template is generated, and the resulting transformations

re also applied to the DTI data (a DTI template is not generated in this
tep). In step 2, spatial normalization is driven by DTI information that
as already been spatially transformed in step 1, a DTI template is gener-
ted, and the resulting transformations are also applied to the T 1 w data
a T 1 w template is not generated in this step). Steps 1 and 2 are then
epeated for multiple iterations, and the transformations from all steps
nd iterations are combined so that each image is interpolated only once
hroughout the whole process. Overall, a) each iteration aims at maxi-
izing the quality of each of the two templates separately, recognizing

hat data from the two modalities contain very different features, and
) multiple iterations in which the same transformations are applied to
oth modalities aim to enhance the spatial matching between the two
emplates. The proposed approach is described in more detail below. 

In step 1, T 1 w-based inter-subject spatial normaliza-
ion was performed according to the procedure outlined by
idwan et al. (2021) which uses the symmetric group-wise nor-
alization (SyGN) method ( Avants et al., 2010b ) ( Fig. 1 ). Mutual

nformation and cross-correlation were used as the cost functions for
inear and deformable registration respectively ( Ridwan et al., 2021 ;
iaz et al., 2022 ). The resulting rigid, affine, and non-linear transfor-
ations for participant i were concatenated into a single transform 𝜑 1 

𝑇 1 𝑖 
superscript 1 indicates the first iteration), and the combined transform
 𝜑 𝑇 1 𝑖 →𝑀 𝑁 𝐼 ◦𝜑 

1 
𝑇 1 𝑖 

) was applied to the raw 𝑇 1 𝑖 data to bring them to

ommon space with a single interpolation. A T 1 w template was then
enerated from the spatially normalized data using weighted averaging
here the weight, 𝑤 𝑖 ( 𝑥 ) , for participant i in voxel x was given by a
aussian kernel ( Niaz et al., 2022 ): 

 𝑖 ( 𝑥 ) = 

1 
𝜎( 𝑥 ) 

√
2 𝜋
𝑒 
− ( 𝑆 𝑖 ( 𝑥 ) − 𝑚𝑒𝑑 ( 𝑥 ) ) 

2 

2 𝜎( 𝑥 ) 2 , (1)

here 𝑆 𝑖 ( 𝑥 ) is the signal of participant i at voxel x , and med ( x ) and 𝜎( x )
re the median and standard deviation of the population at voxel x . This
eighted averaging is based on the widely used kappa-sigma clipping
verage method ( Jörsäter, 1993 ; Lalys et al., 2010 ) and helps reduce
he effects of residual misregistration on the template. The combined
ransform 𝜑 𝑏 0 𝑖 →𝑇 1 𝑖 

◦𝜑 𝑇 1 𝑖 →𝑀 𝑁 𝐼 ◦𝜑 
1 
𝑇 1 𝑖 

was then applied to the 𝐷𝑇 𝐼 𝑖 data to

ring them to common space with a single interpolation, and the results
ere used in step 2 ( Fig. 1 ). 

In step 2, DTI-based inter-subject spatial normalization was per-
ormed using the non-linear registration component of DR-TAMAS
dtireg_create_template.sh) ( Irfanoglu et al., 2016 ) on the DTI data that
ere already transformed in step 1 ( Fig. 1 ). Both deviatoric tensor sim-

larity ( Zhang et al., 2007 ) and trace similarity metrics were used in
he cost function ( Irfanoglu et al., 2016 ). The resulting transformation
or participant i in step 2, iteration 1, was denoted as 𝜑 1 

𝐷𝑇𝐼 𝑖 
. This was

oncatenated with previous transforms and the combined transform,
 𝑏 0 𝑖 →𝑇 1 𝑖 

◦𝜑 𝑇 1 𝑖 →𝑀 𝑁 𝐼 ◦𝜑 
1 
𝑇 1 𝑖 

◦𝜑 1 
𝐷𝑇𝐼 𝑖 

, was applied to the 𝐷𝑇 𝐼 𝑖 data to bring

hem to the new common space with a single interpolation. A DTI tem-
late was generated from the spatially normalized data using weighted
veraging of the diffusion tensors across participants following the DR-
AMAS formula for the weights ( Irfanoglu et al., 2016 Appendix A.4.).
ext, the combined transform 𝜑 𝑇 1 𝑖 →𝑀 𝑁 𝐼 ◦𝜑 

1 
𝑇 

◦𝜑 1 
𝐷𝑇𝐼 

was applied to the

1 𝑖 𝑖 
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Fig. 1. Schematic representation of the proposed method for construction of multimodal T 1 w and DTI templates. 
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aw 𝑇 1 𝑖 data and the results were used in step 1 of the next iteration
 Fig. 1 ). 

Steps 1 and 2 were repeated in multiple iterations, M , until the Pear-
on cross-correlation similarity index (PCC) across homologous tem-
lates from successive iterations was higher than 0.999 (for both T 1 w
nd DTI templates) ( Fig. 1 ). In the last iteration, the combined trans-
orm: 

 

𝑡𝑜𝑡𝑎𝑙 
𝑇 1 𝑖 

= 𝜑 𝑇 1 𝑖 →𝑀 𝑁 𝐼 ◦𝜑 
1 
𝑇 1 𝑖 

◦𝜑 1 
𝐷𝑇𝐼 𝑖 

◦… ◦𝜑 𝑀−1 
𝑇 1 𝑖 

◦𝜑 𝑀−1 
𝐷𝑇𝐼 𝑖 

◦𝜑 𝑀 

𝑇 1 𝑖 
, (2)

as applied to the raw 𝑇 1 𝑖 data to bring them to the final space with
 single interpolation, and a final T 1 w template was constructed with
eighted averaging of signals across participants. Skull and other head

tructures were added to the final T 1 w template using the strategy by
ohlfing et al. ( Rohlfing et al., 2012 ; Ridwan et al., 2021 ; Niaz et al.,
022 ). However, the brain-only template was considered in the rest of
his work. The 𝐷𝑇 𝐼 𝑖 data were also brought to the final space with a
ingle interpolation using the combined transform: 

 

𝑡𝑜𝑡𝑎𝑙 
𝐷𝑇𝐼 𝑖 

= 𝜑 𝑏 0 𝑖 →𝑇 1 𝑖 
◦𝜑 𝑇 1 𝑖 →𝑀 𝑁 𝐼 ◦𝜑 

1 
𝑇 1 𝑖 

◦𝜑 1 
𝐷𝑇𝐼 𝑖 

◦… ◦𝜑 𝑀−1 
𝑇 1 𝑖 

◦𝜑 𝑀−1 
𝐷𝑇𝐼 𝑖 

◦𝜑 𝑀 

𝑇 1 𝑖 
◦𝜑 𝑀 

𝐷𝑇𝐼 𝑖 
, 

(3) 

nd a final DTI template was constructed with weighted averaging of
he diffusion tensors across participants. It should be noted here that
n the final iteration, M , the 𝐷𝑇 𝐼 𝑖 data experience the transformation
 

𝑀 

𝐷𝑇𝐼 𝑖 
which is not applied to the 𝑇 1 𝑖 data (see Eqs. (2) and 3 ). We argue

hat after a few iterations where all transformations are applied to both
odalities, any misalignment between templates introduced by this fi-
al transformation is negligible. 

.4. Evaluation of the proposed method across iterations 

To investigate the role of multiple iterations in the proposed method,
e evaluated in each iteration a) the precision of spatial normalization
cross data used for template construction, b) the characteristics of the
emplates, and c) the spatial matching between the T 1 w and DTI tem-
lates. 

The precision of spatial normalization of T 1 w data from Dataset 1
as assessed in each iteration by means of the pairwise normalized

ross-correlation (PNCC) ( Ferreira et al., 2014 ; Wang et al., 2004 ): 

 𝑁𝐶𝐶 𝑖𝑗 = 

1 
𝑁 

×
∑𝑁 

𝑥 =1 
(
𝑆 𝑖 ( 𝑥 ) − 𝜇𝑖 

)
×
(
𝑆 𝑗 ( 𝑥 ) − 𝜇𝑗 

)

𝜎𝑖 × 𝜎𝑗 
, (4)

here 𝑆 𝑖 ( 𝑥 ) and 𝑆 𝑗 ( 𝑥 ) are the signals of participants i and j at voxel x ,

𝑖 , 𝜎𝑖 and 𝜇𝑗 , 𝜎𝑗 are the mean and standard deviation of the intensities
4 
f all the voxels of subjects i and j , and N is the total number of voxels.
he average PNCC over all pairs of spatially normalized T 1 w images of
ataset 1 (202 ×201/2 = 20,301 pairs) was compared across iterations
sing one-way ANOVA followed by the Tukey-Kramer post-hoc test. Dif-
erences were considered significant at p < 0.05. 

The precision of spatial normalization of DTI data from Dataset 1
as assessed in each iteration by means of the pairwise Euclidean dis-

ance of tensors (DTED) ( Alexander and Gee, 2000 ; Zhang et al., 2011 ;
ang et al., 2021 ): 

𝑇 𝐸𝐷 = 

√ 

𝑡𝑟𝑎𝑐𝑒 ( 
(
𝑫 𝒊 − 𝑫 𝒋 

)2 ) , (5)

here 𝑫 𝒊 and 𝑫 𝒋 are diffusion tensors of participants i and j in the
ame voxel. The average DTED over all pairs of spatially normalized DTI
ata of Dataset 1 (202 ×201/2 = 20,301 pairs) was calculated in each
oxel, and cumulative distributions of the average DTED in white mat-
er (white matter was defined through K-means clustering of mean FA
aps) were compared across iterations using the one-sided two-sample
olmogorov-Smirnov (KS) test. Differences were considered significant
t p < 0.05. 

According to the proposed method, T 1 w and DTI data from individ-
al participants undergo the same spatial transformations in all itera-
ions other than the last. Therefore, we assessed the final spatial match-
ng between T 1 w and DTI data of Dataset 1 when terminating the pro-
osed method at different iterations. For that purpose, the white matter
ask of participant i (generated in Section 2.2 ) was transformed to both

he final T 1 w space and the final DTI space using the transformations
 

𝑡𝑜𝑡𝑎𝑙 
𝑇 1 𝑖 

(Eq.2) and 𝜑 𝑡𝑜𝑡𝑎𝑙 
𝑇 1 𝑡 

◦𝜑 𝑀 

𝐷𝑇𝐼 𝑖 
, respectively, and the overlap between the

wo versions of the white matter mask was assessed using the Jaccard
ndex (JI): 

𝐼 𝑖 = 

𝑀 𝑖 ∩𝑁 𝑖 

𝑀 𝑖 ∪𝑁 𝑖 

, (6) 

here 𝑀 𝑖 ∩𝑁 𝑖 and 𝑀 𝑖 ∪𝑁 𝑖 are the intersection and union of the two
ersions of the white matter mask of subject i . The average JI over all
articipants of Dataset 1 was compared across iterations using one-way
NOVA followed by the Tukey-Kramer post-hoc test. Differences were
onsidered significant at p < 0.05. 

The T 1 w templates generated at different iterations were compared
isually as well as quantitatively in terms of tissue contrast and image
harpness. Tissue contrast was assessed by means of the Fisher score
FS) ( Duda et al., 2012 ; Misaki et al., 2015 ): 

 𝑆 = 

𝜇𝑊 𝑀 

− 𝜇𝐺𝑀 √ 

𝜎2 
𝑊 𝑀 

+ 𝜎2 
𝐺𝑀 

, (7)
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, 𝜎𝑊 𝑀 

and 𝜇𝐺𝑀 

, 𝜎𝐺𝑀 

are the mean and standard devia-
ion of signals in white matter and gray matter voxels. To define which
oxels of a template belonged to white or gray matter, tissue masks of
he individual participants (generated in Section 2.2 ) were transformed
o template space and were combined using the same transformations
nd weights applied to the corresponding T 1 w data for template con-
truction, and tissue probability maps were generated in template space
nd then thresholded to produce white and gray matter masks. The FS
etween gray matter and cerebrospinal fluid was also calculated follow-
ng the same approach. Additionally, the sharpness of the T 1 w templates
rom different iterations was assessed by means of the normalized power
pectra along the inferior-superior (IS), left-right (LR) and anterior-
osterior (AP) axes separately ( Zhang et al., 2011 ; Ridwan et al., 2021 ;
iaz et al., 2022 ). 

The DTI templates generated at different iterations were compared
isually as well as quantitatively in terms of fractional anisotropy (FA)
alues in white matter and sharpness of FA maps. Template FA val-
es were projected onto the white matter skeleton ( S. M. Smith et al.,
006 ; Keihaninejad et al., 2012 ) of the IIT Human Brain Atlas (v.5.0)
 Zhang and Arfanakis, 2018 ) and cumulative distributions of white mat-
er FA values were compared across iterations using the one-sided two-
ample Kolmogorov-Smirnov (KS) test (differences were considered sig-
ificant at p < 0.05). The sharpness of FA templates from different itera-
ions was assessed by means of the normalized power spectra along the
S, LR and AP axes separately ( Zhang and Arfanakis, 2018 ; Zhang et al.,
011 ). 

The spatial matching between the T 1 w and DTI templates generated
t different iterations was evaluated by visual inspection and also quan-
itatively by means of the overlap of white matter masks and the overlap
f gray matter masks corresponding to the T 1 w and DTI templates. More
pecifically, white matter masks of the individual participants (gener-
ted in Section 2.2 ) were transformed to T 1 w template space and DTI
emplate space and were combined into white matter probability maps
sing the same spatial transformations and the same weights applied
o the corresponding T 1 w and DTI data for template construction. The
hite matter probability maps of the T 1 w and DTI templates were then

hresholded to generate corresponding white matter masks and the over-
ap between the two white matter masks was assessed using the Jaccard
ndex (Eq.6). The same approach was used to assess the overlap of gray
atter masks corresponding to the T 1 w and DTI templates. 

.5. Comparison of the proposed method to other multimodal template 

onstruction methods 

The performance of the proposed method for multimodal T 1 w
nd DTI template construction was compared to that of three ap-
roaches that employ multichannel registration. The first one, based
n T 1 w and full tensor information, is available in DR-TAMAS
dtireg_create_template_with_structurals) ( Irfanoglu et al., 2016 ), and
ill be referred to as MC-DRTAMAS. MC-DRTAMAS uses tensor de-
iatoric similarity and tensor trace similarity metrics to guide tensor
egistration and a cross-correlation metric for T 1 w registration, gen-
rates separate displacement fields for each metric, assigns weights to
he different displacements and combines them. The weights used here
ere: 1 for tensor deviatoric similarity, 1 for tensor trace similarity,
nd 2 for T 1 w cross correlation, so that the overall weights for the two
odalities were equal. The second one, based on T 1 w and FA infor-
ation, is available in ANTs (antsMultivariateTemplateConstruction.sh)

 Avants et al., 2011 ) and will be referred to as MC-ANTS. MC-ANTS
ses mutual information as the cost function for rigid and affine regis-
ration and cross-correlation for deformable registration in both chan-
els. The third one, based on T 1 w and full tensor information, utilizes
he MMORF tool (run_template_construction.py) ( Lange et al., 2020a ;
ttps://git.fmrib.ox.ac.uk/cart/mm-template-construction ) and will be
eferred to as MC-MMORF. MC-MMORF uses cubic B-spline elastic trans-
ormation with mean squared error as the cost function for T w reg-
1 

5 
stration and mean squared Frobenius norm for DTI registration, and
ses log-Euclidean averaging to generate the DTI template ( Lange et al.,
020b ; Roumazeilles et al., 2021 ). MC-DRTAMAS, MC-ANTS and MC-
MORF were applied to the co-registered and MNI-aligned T 1 w and
TI data of Dataset 1 ( Section 2.2 ) to generate multimodal T 1 w and
TI templates. Transformations were combined to minimize interpola-

ions as in the proposed method. The templates generated by the pro-
osed method were compared to those constructed by MC-DRTAMAS,
C-ANTS and MC-MMORF in terms of a) template characteristics, b)

patial matching between T 1 w and DTI templates, and c) intra-modality
nd inter-modality spatial normalization precision when used as refer-
nces for spatial normalization of external older adult data. 

The T 1 w and DTI templates generated with the different methods
ere compared by visual inspection as well as quantitatively. More

pecifically, T 1 w templates were compared in terms of tissue contrast,
mage sharpness and standard deviation (calculated across the spatially
ormalized images used in the construction of the templates), and DTI
emplates were compared in terms of FA values in white matter, sharp-
ess of FA maps and standard deviation, using the methods described
n Section 2.4 . The spatial matching between T 1 w and DTI templates
as compared quantitatively by means of the overlap of white matter
asks and the overlap of gray matter masks (as in Section 2.4 ), as well

s by visual inspection of the overlay of the white-gray matter interface
efined in T 1 w templates on the corresponding FA templates. 

The performance of T 1 w and DTI templates when used as refer-
nces for spatial normalization of data from Dataset 2 was compared
cross multimodal template construction methods by assessing the
ntra-modality and inter-modality spatial normalization precision. More
pecifically, T 1 w and DTI data from Dataset 2 were registered to each
 1 w template using ANTs and to each DTI template using DR-TAMAS,
espectively. Symmetric normalization (SyN) diffeomorphic transforma-
ion ( Avants et al., 2008b ) was applied in all ANTs and DR-TAMAS regis-
rations ( Klein et al., 2009 ). To compare the intra-modality inter-subject
patial normalization precision across T 1 w templates, the resulting T 1 w-
ased transformations were applied to the corresponding gray matter
asks of Dataset 2 and the average pairwise JI over all participants

202 ×201/2 = 20,301 pairs) was compared across templates using one-
ay ANOVA followed by the Tukey-Kramer post-hoc test. To compare

he intra-modality inter-subject spatial normalization precision across
TI templates, the average DTED over all pairs of spatially normalized
TI data of Dataset 2 (202 ×201/2 = 20,301 pairs) was calculated in each
oxel, and cumulative distributions of the average DTED in white matter
defined through K-means clustering of FA templates) were compared
cross templates using the one-sided two-sample Kolmogorov-Smirnov
KS) test. To compare the inter-modality spatial matching across tem-
late construction methods, the white matter, gray matter and cere-
rospinal fluid masks of participants from Dataset 2 were transformed to
oth the T 1 w template space (using the T 1 w-based transformations) and
he DTI template space (using the tensor-based transformations) and the
verage JI between the two versions of the masks over all participants
f Dataset 2 was compared across template construction methods using
ne-way ANOVA followed by the Tukey-Kramer post-hoc test. Differ-
nces were considered significant at p < 0.05. 

. Results 

.1. Evaluation of the proposed method across iterations 

With more iterations of the proposed method, the average PNCC
ver all pairs of spatially normalized T 1 w images of Dataset 1 increased
 p < 0.05 in all cases) ( Fig. 2 A), the standard deviation of PNCC de-
reased, and the relative number of white matter voxels with low DTED
ncreased ( p < 10 − 10 ) ( Fig. 2 B), indicating improving spatial matching of
he T 1 w and DTI data used in template construction. In addition, the
verage JI between WM masks transformed by T 1 w and DTI transfor-
ations increased with more iterations ( p < 10 − 10 between iterations 1

https://www.git.fmrib.ox.ac.uk/cart/mm-template-construction
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Fig. 2. (A) Boxplots of the pairwise normalized cross-correlation (PNCC) of spatially normalized T 1 w images used in the construction of the T 1 w template, at different 
iterations of the proposed method. (B) Histograms of the relative number of white matter voxels at different values of the average pairwise Euclidean distance of 
tensors (DTED) across spatially normalized DTI data used in the construction of the DTI template, for different iterations of the proposed method. (C) Boxplots of 
the Jaccard index (JI) between white matter masks transformed by T 1 w and DTI transformations over all data used in template construction, at different iterations 
of the proposed method. 

Fig. 3. (A) Magnified portions of the T 1 w templates generated in iterations 1 and 4. (B) Discriminability (Fisher score) between tissues in T 1 w templates generated 
at different iterations. The brain regions under consideration are highlighted in yellow in the inset axial images. (C) Normalized power spectra of T 1 w templates for 
the superior-inferior (SI) axis and iterations 1 and 4. 
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nd 2), indicating an improving inter-modality matching ( Fig. 2 C). The
mount of improvement decreased with more iterations ( Fig. 2 ). T 1 w
emplates generated with more iterations showed a clearer delineation
f brain structures ( Fig. 3 A) and higher discriminability between tissues
 Fig. 3 B), particularly near the cortex. The average energy in the normal-
zed power spectra was similar across iterations for all axes ( Fig. 3 C),
ndicating similar image sharpness in the T 1 w templates across itera-
ions. DTI templates generated with more iterations had FA maps that,
ear the cortex, provided better delineation of white matter structures
 Fig. 4 A), had higher image sharpness ( Fig. 4 B) and higher FA values in
 relatively higher number of white matter voxels ( p < 10 − 10 when com-
aring iterations 1 and 4) ( Fig. 4 C). There were no significant differences
n the subcortical area of DTI templates across iterations ( Fig. 4 D,E). The
ontours of white matter features seen in the FA maps of DTI templates
ighly conformed to the gyral-sulcal patterns and subcortical features
f  

6 
f the T 1 w templates according to visual inspection, indicating good
patial matching between T 1 w and DTI templates ( Fig. 5 A). Further-
ore, the overlap of tissue masks corresponding to the T 1 w and DTI

emplates as quantified by the Jaccard index increased for more iter-
tions and reached a value of JI = 0.966 for white matter overlap and
I = 0.95 for gray matter overlap after 4 iterations, where JI = 1 is the
aximum. The iterative process of the proposed method converged at
 iterations. The final templates ( Fig. 6 ) are available for download at
ww.nitrc.org/projects/miitra (version 1.5). 

.2. Comparison of the proposed method to other multimodal template 

onstruction methods 

The T 1 w and DTI templates generated from Dataset 1 using the dif-
erent methods were compared by visual inspection as well as quan-
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Fig. 4. (A) Magnified portions of FA maps from the DTI templates generated in iterations 1 and 4. Normalized power spectra of FA maps for the superior-inferior 
(SI), left-right (LR) and anterior-posterior (AP) axes near the cortex (B) and in the subcortical area of the brain (D) for iterations 1 and 4. Histograms of template FA 

values in the white matter near the cortex (C) and in the subcortical area of the brain (E) for iterations 1 and 4. 
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itatively. Features in the cortex, in subcortical structures (e.g. caudo-
enticular gray bridges), and in the cerebellum were better delineated
n the T 1 w template generated by the proposed method compared to
ther methods ( Fig. 7 A). The standard deviation of the T 1 w template
enerated by the proposed method was lower than that of other meth-
ds, especially near the cortex ( Fig. 7 B). The discriminability between
issues measured by the Fisher score was higher in the T 1 w template
onstructed by the proposed method near the cortex ( Fig. 7 C) as well
s in the subcortical area between gray and white matter ( Fig. 7 D). The
iscriminability between gray matter and cerebrospinal fluid in the sub-
ortical area was higher in the T 1 w template built with MC-MMORF
 Fig. 7 D). In addition, the T 1 w template of the proposed method ex-
ibited higher energy in the normalized power spectra for all axes near
he cortex ( Fig. 7 E), while the T 1 w template of MC-MMORF exhibited
lightly higher energy in the subcortical area ( Fig. 7 F), suggesting higher
mage sharpness near the cortex in the T 1 w template built with the pro-
osed method and slightly higher image sharpness in the subcortical
rea in the T 1 w template built with MC-MMORF. Visual inspection of FA
aps of the DTI templates constructed by the different methods showed

hat white matter features near the cortex were better delineated in the
emplate constructed using the proposed method ( Fig. 8 A). The standard
eviation of the FA template generated by the proposed method was
ower than that of other methods ( Fig. 8 B). Near the cortex, FA image
harpness in the template built with the proposed method was similar
o or higher than that of other templates ( Fig. 8 C), while in the subcor-
ical area FA image sharpness was higher in the template built with MC-
MORF ( Fig. 8 E). FA values were higher in a relatively higher number

f white matter voxels throughout the brain in the templates constructed
y MC-MMORF, followed by the proposed method, compared to other
7 
ethods ( p < 10 − 10 ) ( Fig. 8 D,F). The contours of white matter obtained
or the different template construction methods by thresholding the cor-
esponding white matter tissue probability maps were overlaid on the
orresponding FA maps and visual inspection showed good alignment of
hite matter information across T 1 w and DTI templates for all methods

Appendix). 
The performance of T 1 w and DTI templates when used as references

or spatial normalization of data from Dataset 2 was compared across
ultimodal template construction methods. In terms of the T 1 w intra-
odality inter-subject spatial normalization precision, the template con-

tructed with the proposed method allowed higher average pairwise JI
f gray matter masks from Dataset 2 in the cerebral cortex, and sim-
lar but still higher average pairwise JI in cerebellar cortex compared
o the other methods ( p < 0.05), indicating higher inter-subject T 1 w spa-
ial normalization precision especially in the cerebral cortex when using
he template of the proposed method as reference ( Fig. 9 ). The tem-
late constructed using MC-MMORF allowed higher average pairwise
I of gray matter masks in the subcortical gray matter ( p < 0.05), indi-
ating higher spatial normalization precision in subcortical gray matter
hen using the MC-MMORF template as reference ( Fig. 9 ). In terms
f the DTI intra-modality inter-subject spatial normalization precision
or Dataset 2, the template constructed with the proposed method re-
ulted in a higher number of white matter voxels with lower DTED near
he cortex ( p < 10 − 3 ) ( Fig. 10 A), and similar but still higher number of
hite matter voxels with lower DTED in the subcortical area ( p < 0.01)
 Fig. 10 B) compared to templates constructed with the other methods,
uggesting higher inter-subject DTI spatial normalization precision for
ataset 2 especially near the cortex when using the DTI template of the
roposed method as reference. Lastly, the T 1 w and DTI templates of the
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Fig. 5. (A) Axial views of FA colormaps generated with the proposed method in iteration 4 overlaid on the corresponding T 1 w template. (B) Jaccard index between 
white matter (WM) masks and between gray matter (GM) masks of the T 1 w and DTI templates generated in different iterations. 
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roposed method allowed the highest inter-modality spatial matching of
ray matter and cerebrospinal fluid masks from Dataset 2, and the MC-
MORF templates allowed the highest inter-modality spatial matching

f white matter masks from Dataset 2, as shown by the higher average
I between masks of Dataset 2 that experienced T 1 w-based transforma-
ions and those that experienced tensor-based transformations ( p < 0.05)
 Fig. 11 ). 
8 
. Discussion 

The present work (A) introduced an iterative method for multimodal
 1 w and DTI template construction, (B) used this method to develop
 1 w and DTI templates of the older adult brain in a common space,
nd (C) evaluated the performance of the method across iterations and
ompared it to the performance of state-of-the-art approaches based on



Y. Wu, A.R. Ridwan, M.R. Niaz et al. NeuroImage 260 (2022) 119417 

Fig. 6. Examples of sagittal, coronal and axial slices of the final T 1 w template and the FA map of the final DTI template generated with the proposed method. 
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ultichannel registration. It was demonstrated that more iterations of
he proposed method enhanced the characteristics of the resulting T 1 w
nd DTI templates as well as the spatial matching between these tem-
lates. The templates of the older adult brain generated by the final iter-
tion of the proposed method provided better delineation of brain struc-
ures, higher discriminability between tissues, and higher image sharp-
ess near the cortex compared to templates generated with approaches
hat employ multichannel registration. In addition, the spatial match-
ng between the T 1 w and DTI templates constructed by the proposed
ethod approximated the template alignment achieved with methods

mploying multichannel registration. Finally, when using the templates
enerated by the proposed method as references for spatial normaliza-
ion of older adult T 1 w and DTI data from the independent Dataset 2,
oth the intra-modality inter-subject normalization precision and the
nter-modality spatial matching were higher in most evaluations than
hose achieved with templates constructed with other methods. Overall,
he present work brought new insights into multimodal template con-
truction, generated much-needed high quality T 1 w and DTI templates
f the older adult brain in a common space (available for download at
ww.nitrc.org/projects/miitra; version 1.5), and conducted a thorough,
uantitative evaluation of available multimodal template construction
ethods. 

.1. Evaluation of the proposed method across iterations 

The quality of the T 1 w and DTI templates as well as the spatial
atching between these templates was shown to improve with more

terations of the proposed method and appeared to stabilize at 4 itera-
ions. These findings were because spatial matching among data used in
emplate construction (Dataset 1) also improved across iterations. Alter-
ating between T 1 w-driven and DTI-driven spatial normalization dur-
ng template construction may have allowed the two modalities to work
ynergistically in reducing misregistrations. It has been shown that T w-
1 

9 
ased registration using most currently available tools introduces high
requency deformation in the white matter where T 1 w images have low
ontrast ( Lange et al., 2020a ). Subsequent DTI-based registration may
ddress this limitation in white matter and in neighboring structures.
n addition, T 1 w-based registration may help improve spatial match-
ng near the cortex and at tissue interfaces where DTI data may have
ess contrast. Thus, alternating between T 1 w-driven and DTI-driven spa-
ial normalization in the proposed method may have improved spatial
atching among data used in template construction and thereby im-
roved the quality of the T 1 w and DTI templates. The spatial matching
etween T 1 w and DTI templates also improved with more iterations.
ven though in the final iteration of the proposed method the DTI data
xperience one additional transformation that is not applied to the T 1 w
ata, multiple iterations where the two modalities work synergistically
o find a common space and all transformations are applied to data from
oth modalities not only improved spatial matching among data used
n template construction, but also gradually increased the alignment of
he resulting T 1 w and DTI templates. 

.2. Comparison of the proposed method to other multimodal template 

onstruction methods 

The final T 1 w and DTI templates generated with the proposed
ethod exhibited overall higher image quality, especially near the cor-

ex, than those constructed using methods based on multichannel reg-
stration and the same raw data. This was probably due to more pre-
ise intra-modality spatial matching of data from individual participants
Dataset 1) when using single channel instead of multichannel registra-
ion. Multichannel registration aims at optimizing inter-subject spatial
atching for all modalities, but due to the very different contrast in
 1 w and DTI data, T 1 w information may be distracting when attempt-

ng to optimize inter-subject matching of DTI features, and the opposite.
herefore, multichannel registration may have resulted in less precise
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Fig. 7. (A) Comparison of the T 1 w templates generated with different methods. (B) Maps of standard deviation across the spatially normalized T 1 w images used to 
construct the different templates. (C, D) Fisher score between tissues for the different T 1 w templates, near the cortex (C) and in the subcortical area of the brain (D). 
(E, F) Normalized power spectra of the different T 1 w templates for the anterior-posterior (AP), left-right (LR) and superior-inferior (SI) axes near the cortex (E) and 
in the subcortical area of the brain (F). 

10 
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Fig. 8. (A) Comparison of FA colormaps from the DTI templates generated with the different methods. (B) Maps of standard deviation across the spatially normalized 
FA maps of the datasets used to construct the different DTI templates. Normalized power spectra of FA maps of the different DTI templates for the superior-inferior 
(SI), left-right (LR) and anterior-posterior (AP) axes near the cortex (C) and in the subcortical area of the brain (E). Histograms of template FA values in the white 
matter near the cortex (D) and in the subcortical area of the brain (F) for the different DTI templates. 
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patial matching of the features of interest in each modality compared to
onsidering each modality separately, thereby compromising the quality
f both templates. The proposed method overcomes this limitation by
iming at maximizing inter-subject spatial matching for each modality
eparately. 
11 
Among all evaluations of template quality, the proposed method was
lightly outperformed only in the following two. In the subcortical area,
he T 1 w template built with MC-MMORF exhibited slightly higher dis-
riminability between gray matter and cerebrospinal fluid than other
emplates. This may be because MMORF produces fewer local volume



Y. Wu, A.R. Ridwan, M.R. Niaz et al. NeuroImage 260 (2022) 119417 

Fig. 9. Boxplots of the pairwise Jaccard index (PJI) of gray matter masks in the cerebral cortex (left), subcortical gray matter (middle), and cerebellar cortex (right) 
from spatially normalized T 1 w data of Dataset 2 when using different T 1 w templates as references. 

Fig. 10. Histograms of the relative number of white matter voxels at different values of the average pairwise Euclidean distance of tensors (DTED) across spatially 
normalized DTI data from Dataset 2, near the cortex (A), and in the subcortical area of the brain (B), when using different DTI templates as references. 

Fig. 11. Boxplots of the Jaccard index (JI) between white matter masks (left), gray matter masks (middle), and cerebrospinal fluid masks (right) of Dataset 2 
transformed by T 1 w and DTI transformations when using the templates constructed by the different methods as references for spatial normalization. 
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hanges and shape distortions within subcortical white matter compared
o ANTs registration ( Lange et al., 2020a ). However, probably due to
he same reason, the caudolenticular gray bridges which are fine struc-
ures in the subcortical area were not visible in the T 1 w template of
C-MMORF and were only visible with the proposed method ( Fig. 7 A).
lso in the subcortical area, the FA map of the DTI template constructed
12 
y MC-MMORF exhibited higher image sharpness than other templates.
his was probably due to the higher FA values in white matter of the
C-MMORF template, which in turn might be due to log-Euclidean

veraging of diffusion tensors used by MC-MMORF ( Lange et al.,
020b ; Roumazeilles et al., 2021 ; https://git.fmrib.ox.ac.uk/cart/mm-
emplate-construction ). Previous studies have suggested that the log-

http://www.git.fmrib.ox.ac.uk/cart/mm-template-construction
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uclidean metric ( Arsigny et al., 2006 ) leads to a substantial bias espe-
ially for high FA tensors, and thus the FA values in the MC-MMORF
emplate might be overestimated ( Pasternak et al., 2010 , 2012 ). 

Visual inspection demonstrated that all template construction meth-
ds provided equally good alignment between T 1 w and DTI templates.
uantitatively, methods based on multichannel registration achieve ex-
ellent alignment of T 1 w and DTI templates by default because the same
ransformations are applied to data from both modalities during tem-
late construction. The proposed method also applies the same trans-
ormations to data from both modalities up until the final step of the
nal iteration, at which point the DTI data experience one additional
ransformation that is not applied to the T 1 w data. Yet, it was shown
hat the last iteration of the proposed method (iteration 4) achieved
accard indices between the white matter masks and between the gray
atter masks of T 1 w and DTI templates of approximately 0.97 and 0.95

espectively, while methods based on multichannel registration had a
accard index of 1 by default. The above suggests that the proposed
ethod provides higher quality templates at the cost of only a slight

not noticeable) mismatch between the two templates. 
When used as a reference for spatial normalization of data from the

ndependent Dataset 2, the T 1 w template generated with the proposed
ethod allowed higher intra-modality inter-subject spatial normaliza-

ion precision in the cerebral and cerebellar cortices. The DTI template
f the proposed method also allowed higher overall intra-modality inter-
ubject spatial normalization precision compared to DTI templates con-
tructed with other methods. Furthermore, inter-modality spatial match-
ng in gray matter and in CSF was the highest when using the T 1 w and
TI templates of the proposed method. These findings were primarily
ue to the enhanced image quality of the templates constructed with the
roposed method. Sharper templates preserving fine details and allow-
ng better delineation of brain structures have been shown to provide
igher spatial normalization precision, and this has a direct impact on
he sensitivity and specificity of template-based neuroimaging studies
 Hsu et al., 2015 ; Ridwan et al., 2021 ; Zhang and Arfanakis, 2018 ). The
C-MMORF T 1 w template allowed higher intra-modality inter-subject

patial normalization precision only in the subcortical gray matter, and
ighest inter-modality matching in the white matter, possibly due to the
imited shape deformations in the subcortical area when using MMORF
 

.3. Caveats 

In addition to the multiple strengths of the proposed multimodal
 1 w and DTI template construction method and the analysis presented
bove, this work also has a few limitations. The proposed template con-
truction method is more computationally intensive and time consum-
ng compared to other approaches. However, this limitation is not of
oncern since standardized templates are constructed once and used in
ultiple studies, and therefore the cost in computational resources and
rocessing time associated with the proposed method is unimportant.
n addition, the present work employed state-of-the-art image registra-
ion and template construction methods and data of typical quality from
lder adults in the 65–95 years age-range. Future work should also con-
ider other registration algorithms as well as data with different im-
ge quality and from different age-ranges. It is not possible to explore
ll combinations here, but we believe our choice to use state-of-the-
rt methods and data of typical quality is scientifically justified and of
ighest interest. Additionally, the focus of the present work was multi-
odal T 1 w and DTI templates. Developing templates for other pairs of
odalities e.g. T 2 w and DTI, or extending the proposed method to more

han two modalities, constitute interesting research questions requiring
xtensive investigation that is beyond the scope of this work. Finally,
e recently presented a method for constructing a T 1 w template of the
lder adult brain with submillimeter resolution and showed that, com-
ared to 1 mm T 1 w templates, the high-resolution template provided
igher inter-subject spatial normalization precision and enabled detec-
13 
ion of smaller inter-group morphometric differences for older adult data
 Niaz et al., 2022 ). Therefore, studies requiring only a T 1 w template may
enefit from using the previously constructed high-resolution template
ompared to the 1 mm template constructed here (note that the two
emplates are also located in a slightly different space). In future work,
e will incorporate the method we presented in Niaz et al., 2022 , to de-
elop multimodal T 1 w and DTI templates at submillimeter resolution. 

.4. Adapting the proposed method for registration of an individual’s T 1 w 

nd DTI data to the templates generated in this work 

The iterative approach for multimodal T 1 w and DTI template con-
truction can be adapted for registration of T 1 w and DTI data from in-
ividual older adults to the templates constructed in this work. The ap-
roach is similar to that described in Section 2.3 with the difference that
here is no group-wise normalization, no weighted averaging of signals,
nd no template building or updating, since data from a single individ-
al are registered to standardized templates. More specifically, in step 1,
 1 w data of an individual older adult are registered to the T 1 w MIITRA
emplate and the resulting transformation is also applied to the DTI data
f the individual (assuming the T 1 w and DTI data of the individual are
riginally in the same space). In step 2, DTI data of the same individual
lder adult are registered to the DTI MIITRA template and the resulting
ransformation is also applied to the T 1 w data of the individual. Steps
 and 2 are then repeated for multiple iterations, and the transforma-
ions from all steps and iterations are combined so that each image is
nterpolated only once throughout the whole process. A script named
eg_to_MIITRA_T1_and_DTI.sh that executes this iterative registration of
n individual’s T1w and DTI data to the templates constructed in this
ork is available for download at www.nitrc.org/projects/miitra. 

. Conclusion 

The present work introduced an iterative method for multimodal
 1 w and DTI template construction and generated templates of the older
dult brain that were shown to provide better delineation of brain struc-
ures, higher discriminability between tissues, and higher image sharp-
ess near the cortex compared to templates generated with state-of-the-
rt approaches based on multichannel registration. Furthermore, the
patial matching between the T 1 w and DTI templates constructed by
he proposed method approximated the template alignment achieved by
efault with methods employing multichannel registration. The higher
mage quality of the templates generated by the proposed method fa-
ilitated higher precision of intra-modality inter-subject normalization
f an independent older adult dataset as well as higher inter-modality
patial matching, which are well-known to directly impact the sensitiv-
ty and specificity of template-based neuroimaging studies. Overall, the
resent work brought new insights into multimodal template construc-
ion and generated much-needed high quality T 1 w and DTI templates of
he older adult brain in a common space (available for download as part
f the MIITRA atlas at www.nitrc.org/projects/miitra; version 1.5). 
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